Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems

نویسندگان

  • Alan Demlow
  • Natalia Kopteva
چکیده

Residual-type a posteriori error estimates in the maximum norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polyhedral domains. Standard finite element approximations are considered. The error constants are independent of the diameters of mesh elements and the small perturbation parameter. In our analysis, we employ sharp bounds on the Green’s function of the linearized differential operator. Numerical results are presented that support our theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Posteriori Error Estimates for One-dimensional Convection-diffusion Problems

This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva’s a posteriori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a onedimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is generalized and improved. 2000 MSC: 65L10, 65L70.

متن کامل

Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem

A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimate.

متن کامل

Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions

A semilinear second-order parabolic equation is considered in a regular and a singularly perturbed regime. For this equation, we give computable a posteriori error estimates in the maximum norm. Semidiscrete and fully discrete versions of the backward Euler, Crank–Nicolson, and discontinuous Galerkin dG(r) methods are addressed. For their full discretizations, we employ elliptic reconstructions...

متن کامل

Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems

We propose and study a posteriori error estimates for convection–diffusion–reaction problems with inhomogeneous and anisotropic diffusion approximated by weighted interiorpenalty discontinuous Galerkin methods. Our twofold objective is to derive estimates without undetermined constants and to analyze carefully the robustness of the estimates in singularly perturbed regimes due to dominant conve...

متن کامل

Green’s Function Estimates for a Singularly Perturbed Convection-diffusion Problem in Three Dimensions

A linear singularly perturbed convection-diffusion problem with characteristic layers is considered in three dimensions. Sharp bounds for the associated Green’s function and its firstand second-order derivatives are established in the L1 norm by employing the parametrix method. The dependence of these bounds on the small perturbation parameter is shown explicitly. The obtained estimates will be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2016